

Using PETSc solvers in
BOUT++

Ben Dudson

York Plasma Institute, University of York, UK

benjamin.dudson@york.ac.uk

4th September 2013

mailto:benjamin.dudson@york.ac.uk

15 / 2

Compiling BOUT++ for workshop

If you haven't yet compiled BOUT++ with PETSc:

1) Log into Hopper

2) Delete and re-download BOUT++

 rm -rf BOUT-2.0
 git clone

 https://github.com/boutproject/BOUT-2.0.git

3) Re-download and run workshop configuration script:

 cd BOUT-2.0
 source configure.workshop

To check what BOUT++ is configured with, check make.config

15 / 3

PETSc and MUMPS solvers

External solvers are used for two components:

1) Time integration

• Currently fixed timestep methods available
• See Wednesday's talk on preconditioning

2) Inversion of Laplacian or Helmholtz type problems

• Solution of linear spatial PDEs which arise in drift-reduced
models (vorticity or polarisation equations)

• Optional replacements for built-in solver

15 / 4

Motivation

Many plasma models of interest involve an equation of the form

Where n is the total density, φ is electrostatic potential, and U is
the vorticity.

The built-in solvers in BOUT++ make the following assumptions:

1) Parallel derivatives are small, so y derivatives are ignored
→ 2D solves in (X,Z)

2) Coefficient n is constant in Z (toroidal angle) so that FFTs can
be used in Z to decompose into toroidal modes

15 / 5

Motivation

Many plasma models of interest involve an equation of the form

Where n is the total density, φ is electrostatic potential, and U is
the vorticity.

The built-in solvers in BOUT++ make the following assumptions:

1) Parallel derivatives are small, so y derivatives are ignored
→ 2D solves in (X,Z)
→ Work in progress. See Dudson poster on Friday

2) Coefficient n is constant in Z (toroidal angle) so that FFTs can
be used in Z to decompose into toroidal modes
→ PETSc and MUMPS solvers do not make this assumption

15 / 6

Preconditioning of PETSc Laplace

● MUMPS is a direct solver, so doesn't need preconditioning
→ Tends to be more robust (will converge)
→ Generally slow: 10 – 100x slower than built-in solver

● PETSc can use direct solvers (including MUMPS), but primary
use is for iterative solvers (KSP component)
→ May not converge if starting solution isn't “close enough”
→ Can be much more efficient (< 10 x built-in)

15 / 7

Preconditioning of PETSc Laplace

● MUMPS is a direct solver, so doesn't need preconditioning
→ Tends to be more robust (will converge)
→ Generally slow: 10 – 100x slower than built-in solver

● PETSc can use direct solvers (including MUMPS), but primary
use is for iterative solvers (KSP component)
→ May not converge if starting solution isn't “close enough”
→ Can be much more efficient (< 10 x built-in)

● Many “black box” preconditioning
methods are available in PETSc
e.g. jacobi, sor, gamg

● There is another way...

[laplace]
type = petsc
pctype = sor
rightprec = true

15 / 8

Preconditioning of PETSc Laplace

● Reminder: Aim is to solve a linear problem of the form:

A preconditioner is a fast approximate inverse of A:

For left preconditioning, the iterative (PETSc) solver is now solving

● Most of the time the built-in solver is a good approximation to the
full problem
→ Use the approximate solver to precondition PETSc solver
→ If n is constant in Z then preconditioner is inverse of A
 (apart from differences in Z discretisation, FFT vs FD)

15 / 9

Preconditioning of PETSc Laplace

● Set laplace solver and preconditioner types

● Set the options for the preconditioner in a subsection

● Use the new(er) object interface to pass 3D fields

[laplace]
type = petsc
pctype = user
rightprec = true

[laplace:precon]
filter = 0.
flags = 49152

Leave type to default (tri or spt)
Don't filter, or preconditioner is singular
Set boundary to identity

See test-laplace2 and test-petsc-laplace examples

“user” → use a second solver
Right preconditioning by default

15 / 10

Preconditioning of PETSc Laplace

Timings for test-laplace2 with n varying in Z:

n = sin(x) * gauss(x-0.5) * (1.0 + 0.9*cos(z))

40 x 32
50%

none

jacobi

sor

user

0.113 (224)

0.110 (226)

0.048 (35)

0.015 (5)

40 x 32
10%

0.157 (319)

0.162 (318)

0.022 (30)

0.013 (4) 0.024 (9)

0.048 (40)

0.137 (299)

0.142 (299)

40 x 32
90%

FFT solver: ~ 0.002s

80 x 64
90%

0.610 (178)

0.110 (8)

Resolution (X x Z)
Z perturb

p
re

co
n

d
it

i o
n

er

Inversion time in seconds (iterations)

15 / 11

Tests and applications

● test-laplace2 is a case which just runs two different solvers and
compares the results. Useful for quick checks and timing

● test-petsc-laplace is a more complicated case which
compares different order methods (2nd, 4th) against analytical
solutions

● blob2d: 2D Blob dynamics example
→ A simplified model for density blobs/holes in the SOL
→ Can be used to test the impact of the Boussinesq behavior
→ Can be extended in many ways for physics studies

15 / 12

2D blob problem

● Slab simulation of a plasma 'blob' moving in the SOL (drift plane)

● A physical system with large density inhomogeneities (100%)

15 / 13

2D blob problem
● Vorticity equation solved for electrostatic potential:

● The Laplacian class solves boundary-value problems of form:

→ In examples/blob2d:
Laplacian *phiSolver;

phiSolver = Laplacian::create(Options::getRoot()
 ->getSection("phiSolver"));

phiSolver->setCoefC(n);

phi = phiSolver->solve(omega / n, phi);

Pointer to a solver

Create a solver, using
options from BOUT.inp

Change the coefficients and solve

15 / 14

2D blob problem

● The Boussinesq approximation can be switched on and off in
BOUT.inp input file

● If Boussinesq = true, options
in [phiBoussinesq] are used
→ Defaults to FFT methods

● If Boussinesq = false, options
in [phiSolver] are used
→ PETSc + FFT precon

● Some differences seen in radial velocity
→ Still needs investigation

boussinesq = false

15 / 15

2D blob problem

● Quick (flawed) timing comparison using 128 x 128 mesh, T=5e3

Boussinesq (FFT method) : 8m 23s

Boussinesq (PETSc 4th-order): 47 m 37 s

Full (non-Boussinesq, PETSc 4th-order): 41 m 12 s

● Vorticity inversion went from ~14% of run-time to ~80%

● Depending on your problem, this extra cost may or may not be
worthwhile

● Simple to try (same interface). See examples e.g. blob2d

